Ask Question
8 December, 19:59

A ball is thrown straight up from the top of a 24 foot tall building with an initial velocity of

40 feet per second. The height of the ball as a function of time can be modeled by the function

h = - 16t2 + 40t + 24

Part A

What is the height of the ball after 1 second? h=

Part B

How long will it take for the ball to hit the ground (set h=0 and factor completely)

seconds

+5
Answers (1)
  1. 8 December, 23:36
    0
    Step-by-step explanation:

    Part A

    The height of the ball as a function of time can be modeled by the function

    h = - 16t² + 40t + 24

    When t = 1 second,

    h = - 16 * 1² + 40 * 1 + 24

    h = - 16 + 40 + 24

    h = 48 feet

    Part B

    The equation would be

    h = - 16t² + 40t + 24 = 0

    Dividing both sides of the equation by 4, it becomes

    - 4t² + 10t + 6 = 0

    We would find two numbers such that their sum or difference is 10t and their product is - 24t².

    The two numbers are 12t and - 2t. Therefore,

    - 4t² + 12t - 2t + 6 = 0

    - 4t (t - 3) - 2 (t - 3) = 0

    t - 3 = 0 or - 4t - 2 = 0

    t = 3 or t = 2 / - 4 = - 1/2

    Since the time cannot be negative, then t = 3 seconds

    It will take 3 seconds for the ball to hit the ground.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A ball is thrown straight up from the top of a 24 foot tall building with an initial velocity of 40 feet per second. The height of the ball ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers