Ask Question
21 May, 06:10

Prove:Sinx-2sin3x+sin5x=2sinx (cos4x-cos2x)

+5
Answers (2)
  1. 21 May, 06:57
    0
    A = sinx - sin3x,

    B = - sin3x + sin5x

    First A:

    The average of x and 3x is 2x, and they (x and 3x, that is) are each a distance of x from this average. That's fancy talk for:

    x = 2x-x,

    3x = 2x+x.

    So, A = sin (2x-x) - sin (2x+x)

    Using angle sum formulas:

    A = (sin2x cosx - cos2x sinx) - (sin2x cosx + cos2x sinx)

    A = - 2 cos2x sinx

    Similarly,

    B = - sin (4x-x) + sin (4x+x)

    = - (sin4x cosx - cos4x sinx) + (sin4x cosx + cos4x sinx)

    B = 2 cos4x sinx

    Now,

    sinx - 2sin3x + sin5x = A+B = - 2 cos2x sinx + 2 cos4x sinx

    = 2 sinx (cos4x - cos2x).
  2. 21 May, 08:15
    0
    Sinx-2sin3x+sin5x=2sinx (cos4x-cos2x)

    Step-by-step explanation:

    sinx - 2sin3x + sin5x = sinx - sin (3x) + sin (5x) - sin (3x)

    = 2· cos[ (x+3x) / 2] · sin[ (x-3x) / 2] + 2·cos[ (5x+3x) / 2]· sin[ (5x-3x) / 2]

    = 2· cos (2x) ·sin (-x) + 2· cos (4x) · sin (x)

    = - 2·cos (2x) ·sinx + 2· cos (4x) ·sinx

    = 2·sinx · [ cos (4x) - cos (2x) ]
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove:Sinx-2sin3x+sin5x=2sinx (cos4x-cos2x) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers