Ask Question
16 May, 00:30

In right triangle ABC, angle C = 90 degrees. Angle A = 40 degrees and the length of the leg opposite angle B is 18 feet. Find the length of the hypotenuse to the nearest tenth.

+3
Answers (1)
  1. 16 May, 03:50
    0
    The hypotenuse is 20 ft

    Step-by-step explanation:

    Step 1: This is a right triangle, so the trigonometric ratio cosine can be used to find the length of the hypotenuse. Given side opposite to ∠B, AC = 18 ft and ∠A = 40°,

    cos 40° = adjacent side/hypotenuse = AC/AB = 18/AB

    ⇒ AB = 18/cos 40° = 18/0.76 = 23.5 ft ≈ 20 ft
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “In right triangle ABC, angle C = 90 degrees. Angle A = 40 degrees and the length of the leg opposite angle B is 18 feet. Find the length of ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers