Ask Question
8 September, 10:21

Find the value of cosAcos2Acos3A ... cos998Acos999A where A=2π/1999

+5
Answers (1)
  1. 8 September, 13:45
    0
    Hello,

    Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh.

    Let's assume

    P=cos (a) * cos (2a) * cos (3a) * ... * cos (998a) * cos (999a)

    Q=sin (a) * sin (2a) * sin (3a) * ... * sin (998a) * sin (999a)

    As sin x * cos x=sin (2x) / 2

    P*Q=1/2*sin (2a) * 1/2sin (4a) * 1/2*sin (6a) * ...

    *1/2 * sin (2*998a) * 1/2*sin (2*999a) (there are 999 factors)

    = 1 / (2^999) * sin (2a) * sin (4a) * ...

    *sin (998a) * sin (1000a) * sin (1002a) * ... * sin (1996a) * sin (1998a)

    as sin (x) = - sin (2pi-x) and 2pi=1999a

    sin (1000a) = - sin (2pi-1000a) = - sin (1999a-1000a) = - sin (999a)

    sin (1002a) = - sin (2pi-1002a) = - sin (1999a-1002a) = - sin (997a)

    ...

    sin (1996a) = - sin (2pi-1996a) = - sin (1999a-1996a) = - sin (3a)

    sin (1998a) = - sin (2pi-1998a) = - sin (1999a-1998a) = - sin (a)

    So sin (2a) * sin (4a) * ...

    *sin (998a) * sin (1000a) * sin (1002a) * ... * sin (1996a) * sin (1998a)

    = sin (a) * sin (2a) * sin (3a) * ... * sin (998) * sin (999) since there are 500 sign "-".

    Thus

    P*Q=1/2^999*Q or Q!=0 then

    P=1 / (2^999)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Find the value of cosAcos2Acos3A ... cos998Acos999A where A=2π/1999 ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers