Ask Question
21 December, 15:16

Verify each identity:

(tan x + tan y) / (1 - tan x tan y) = (sin x cos y + cos x sin y) / (cos x cos y - sin x sin y)

+3
Answers (2)
  1. 21 December, 15:58
    0
    Using double angle identity in trigonometry, sin x cos y + cos x sin y is equal to the sum of x and y that is the angle inside the sine function notation. On the other hand, cos x cos y - sin x sin y is equal to cos (x+y) while (tan x + tan y) / (1 - tan x tan y) is equal to tan (x+y). Since tan (x+y) = sin (x+y) / cos (x+y), the problem is solved
  2. 21 December, 18:57
    0
    Tan (x) + tan (y) / 1 - tan (x) tan (y) = sin (x) cos (y) + cos (x) sin (y) / cos (x) cos (y) - sin (x) sin (y)

    tan (x + y) = sin (x + y) / cos (x + y)

    tan (x + y) = tan (x + y)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Verify each identity: (tan x + tan y) / (1 - tan x tan y) = (sin x cos y + cos x sin y) / (cos x cos y - sin x sin y) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers