Ask Question
17 June, 08:20

Prove this (sinx-tanx) (cosx-cotx) = (sinx-1) (cosx-1)

+2
Answers (2)
  1. 17 June, 09:36
    0
    (sinx - tanx) (cosx - cotx)

    = (sinx - sinx cosx) (cosx - cosx sinx)

    = sinx (1 - 1 cosx) cosx (1 - 1 sinx)

    = sinx (cosx cosx - 1 cosx) cosx (sinx sinx - 1 sinx)

    = sinx cosx (cosx - 1) cosx sinx (sinx - 1)

    = (cosx - 1) (sinx - 1)
  2. 17 June, 11:48
    0
    Distribute first

    sinx cosx - sinx cotx - cosx tanx+tanx cotx

    sinx cosx - sinx (cosx/sinx) - cosx (sinx/cosx) + tanx (cosx/sinx)

    sinxcosx - cosx - sinx + 1

    and factor

    cosx (sinx - 1) - 1 (sinx - 1)

    (sinx - 1) (cosx-1)
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove this (sinx-tanx) (cosx-cotx) = (sinx-1) (cosx-1) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers