Ask Question
25 August, 03:18

Prove that 2sec^2x-2sec^2xsinx-sin^2x-cos^2x=1.

+1
Answers (1)
  1. 25 August, 04:59
    0
    2sec² (x) - 2sec² (x) sin (x) - sin² (x) - cos² (x) = 1

    2sec² (x) - 2sec² (x) sin (x) - sin² (x) - cos² (x) = sin² (x) + cos² (x)

    + sin² (x) + cos² (x) + sin² (x) + cos² (x)

    2sec² (x) - 2sec² (x) sin (x) = 2sin² (x) + 2cos² (x)

    2[sec² (x) ] - 2[sec² (x) sin (x) ] = 2[sin² (x) + cos² (x) ]

    2[sec² (x) - sec² (x) sin (x) ] = 2 (1)

    2 2

    sec² (x) - sec² (x) sin (x) = 1

    sec² (x) sec² (x)

    1 - sin (x) = cos² (x)

    sin² (x) + cos² (x) - sin (x) = cos² (x)

    - cos² (x) - cos² (x)

    sin² (x) - sin (x) = 0

    sin (x) [sin (x) ] - sin (x) [1] = 0

    sin (x) [sin (x) - 1] = 0

    sin (x) = 0 or sin (x) - 1 = 0

    sin⁻¹[sin (x) ] = sin⁻¹ (0) + 1 + 1

    x = 0 sin (x) = 1

    sin⁻¹[sin (x) ] = sin⁻¹ (1)

    x ≈ 1.5707

    The solution is actually equal to zero.
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Prove that 2sec^2x-2sec^2xsinx-sin^2x-cos^2x=1. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers