Ask Question
25 June, 08:45

The random variable X is normally distributed with mean 82 and standard deviation 7.4. Find the value of q such that P (82 - q < X < 82 + q) = 0.44.

+1
Answers (1)
  1. 25 June, 11:45
    0
    P (82 - q < x < 82 + q) = 0.44

    P (x < 82 + q) - P (82 - q) = 0.44

    P (z < (82 + q - 82) / 7.4 - P (z < (82 - q - 82) / 7.4) = 0.44

    P (z < q/7.4) - P (z < - q/7.4) = 0.44

    P (z < q/7.4) - (1 - P (z < q/7.4) = 0.44

    P (z < q/7.4) - 1 + P (z < q/7.4) = 0.44

    2P (z < q/7.4) - 1 = 0.44

    2P (z < q/7.4) = 1.44

    P (z < q/7.4) = 0.72

    P (z < q/7.4) = P (z < 0.583)

    q/7.4 = 0.583

    q = 0.583 x 7.4 = 4.31
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “The random variable X is normally distributed with mean 82 and standard deviation 7.4. Find the value of q such that P (82 - q < X < 82 + ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers