Ask Question
26 March, 18:04

1. cot x sec4x = cot x + 2 tan x + tan3x

2. (sin x) (tan x cos x - cot x cos x) = 1 - 2 cos2x

3. 1 + sec2x sin2x = sec2x

4. - tan2x + sec2x = 1

+2
Answers (1)
  1. 26 March, 20:15
    0
    1. cot (x) sec⁴ (x) = cot (x) + 2tan (x) + tan (3x)

    cot (x) sec⁴ (x) cot (x) sec⁴ (x)

    0 = cos⁴ (x) + 2cos⁴ (x) tan² (x) - cos⁴ (x) tan⁴ (x)

    0 = cos⁴ (x) [1] + cos⁴ (x) [2tan² (x) ] + cos⁴ (x) [tan⁴ (x) ]

    0 = cos⁴ (x) [1 + 2tan² (x) + tan⁴ (x) ]

    0 = cos⁴ (x) [1 + tan² (x) + tan² (x) + tan⁴ (4) ]

    0 = cos⁴ (x) [1 (1) + 1 (tan² (x)) + tan² (x) (1) + tan² (x) (tan² (x) ]

    0 = cos⁴ (x) [1 (1 + tan² (x)) + tan² (x) (1 + tan² (x)) ]

    0 = cos⁴ (x) (1 + tan² (x)) (1 + tan² (x))

    0 = cos⁴ (x) (1 + tan² (x)) ²

    0 = cos⁴ (x) or 0 = (1 + tan² (x)) ²

    ⁴√0 = ⁴√cos⁴ (x) or √0 = (√1 + tan² (x)) ²

    0 = cos (x) or 0 = 1 + tan² (x)

    cos⁻¹ (0) = cos⁻¹ (cos (x)) or - 1 = tan² (x)

    90 = x or √-1 = √tan² (x)

    i = tan (x)

    (No Solution)

    2. sin (x) [tan (x) cos (x) - cot (x) cos (x) ] = 1 - 2cos² (x)

    sin (x) [sin (x) - cos (x) cot (x) ] = 1 - cos² (x) - cos² (x)

    sin (x) [sin (x) ] - sin (x) [cos (x) cot (x) ] = sin² (x) - cos² (x)

    sin² (x) - cos² (x) = sin² (x) - cos² (x)

    + cos² (x) + cos² (x)

    sin² (x) = sin² (x)

    - sin² (x) - sin² (x)

    0 = 0

    3. 1 + sec² (x) sin² (x) = sec² (x)

    sec² (x) sec² (x)

    cos² (x) + sin² (x) = 1

    cos² (x) = 1 - sin² (x)

    √cos² (x) = √ (1 - sin² (x))

    cos (x) = √ (1 - sin² (x))

    cos⁻¹ (cos (x)) = cos⁻¹ (√1 - sin² (x))

    x = 0

    4. - tan² (x) + sec² (x) = 1

    -1 - 1

    tan² (x) - sec² (x) = - 1

    tan² (x) = - 1 + sec²

    √tan² (x) = √ (-1 + sec² (x))

    tan (x) = √ (-1 + sec² (x))

    tan⁻¹ (tan (x)) = tan⁻¹ (√ (-1 + sec² (x))

    x = 0
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “1. cot x sec4x = cot x + 2 tan x + tan3x 2. (sin x) (tan x cos x - cot x cos x) = 1 - 2 cos2x 3. 1 + sec2x sin2x = sec2x 4. - tan2x + sec2x ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers