Ask Question
3 February, 09:59

Tom determines the system of equations below has two solutions, one of which is located at the vertex of the parabola. equation 1: (x - 3) 2 = y - 4 equation 2: y = - x bin order for this solution to be reasonable, which qualifications must be met?

+5
Answers (1)
  1. 3 February, 13:37
    0
    (x - 3) ² = y - 4

    y = (x - 3) ² + 4

    One solution is located at the vertex: (3, 4).

    y = - x + b

    4 = - 3 + b

    b = 7

    (x - 3) ² = - x + 7 - 4

    x² - 6 x + 9 = - x + 3

    x² - 5 x + 6 = 0

    x² - 2 x - 3 x + 6 = 0

    x (x - 2) - 3 (x - 2) = 0

    (x - 2) (x - 3) = 0

    x 1 = 2, x 2 = 3

    y 1 = 5, y 2 = 4.

    In order for this solution to be reasonable, the 2nd equation must be:

    y = - x + 7
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Tom determines the system of equations below has two solutions, one of which is located at the vertex of the parabola. equation 1: (x - 3) ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers