Ask Question
1 August, 17:13

Neutron stars consist only of neutrons and have unbelievably high densities. a typical mass and radius for a neutron star might be 9.9 x 1028 kg and 1.9 x 103 m. (a) find the density of such a star. (b) if a dime (v = 2.0 x 10-7 m3) were made from this material, how much would it weight (in pounds) ?

+5
Answers (1)
  1. 1 August, 20:26
    0
    Density is 3.4x10^18 kg/m^3 Dime weighs 1.5x10^12 pounds The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so 4/3 pi 1.9x10^3 = 4/3 pi 6.859x10^3 m^3 = 2.873x10^10 m^3 Now divide the mass by the volume 9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3 Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3 Now to figure out how much the dime weighs, just multiply by the volume of the dime. 3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg And to convert from kg to lbs, multiply by 2.20462, so 6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Neutron stars consist only of neutrons and have unbelievably high densities. a typical mass and radius for a neutron star might be 9.9 x ...” in 📘 Physics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers