Ask Question
1 November, 10:56

A (n) 14 g bullet is fired into a (n) 121 g block of wood at rest on a horizontal surface and stays inside. After impact, the block slides 8.3 m before coming to rest. The acceleration of gravity is 9.8 m/s 2. If the coefficient of friction between the surface and the block is 0.7, find the speed of the bullet before impact. Answer in units of m/s

+3
Answers (1)
  1. 1 November, 14:13
    0
    33.14 m/s

    Explanation:

    The mass of the block is 121g or. 121 kg. As the bullet is lodged in the block the total mass is 121+14 = 135 g or 0.135 kg.

    The frictional force that makes the block come to a stop is normal force * coefficient of friction = 0.135 * 9.8 * 0.7 = 0.9261 N

    As the block comes to rest after sliding for 8.3 meters the energy it was given by the bullet is

    0.135 * 9.8 * 0.7 * 8.3

    = 7.69 Nm

    Now this energy is provided the bullet. So the energy in the bullet was equal to

    1/2 * mv² = 0.5 * 14 * v².

    0.5 * 0.014 * v^2 = 0.135 * 9.8 * 0.7 * 8.3 = 7.69

    => 0.007 * v² = 7.69

    => v² = 7.69 / 0.007

    => v² = 1098.57

    => v = √1098.57

    => v = 33.14 m/s
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A (n) 14 g bullet is fired into a (n) 121 g block of wood at rest on a horizontal surface and stays inside. After impact, the block slides ...” in 📘 Physics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers