Ask Question
21 December, 05:53

A 120 kg hoop rolls along a horizontal floor so that the hoop's center of mass has a speed of 0.220 m/s. How much work must be done on the hoop to stop it?

+2
Answers (1)
  1. 21 December, 07:54
    0
    Answer:W = - 5.808J

    Explanation:

    Given:

    Mass of hoop, m=120kg

    Centre of mass speed of hoop, v = 0.220m/s

    Rotational inertia, I = mr^2

    I=120r^2

    Kinetic energy of hoop = Linear kinetic energy + Rotational kinetic energy

    K = (1/2mv^2) + (1/2Iw^2)

    But w = (v/r) ^2

    K = (1/2mv^2) + (1/2*120r^2 (v/r) ^2)

    K = (1/2*120*0.220^2) + (1/2*120*0.220^2)

    K = 5.808J

    To stop the hoop, its final kinetic energy must be zero,

    Workdone = Kfinal-Kinitial = 0 - 5.808

    W = - 5.808J
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A 120 kg hoop rolls along a horizontal floor so that the hoop's center of mass has a speed of 0.220 m/s. How much work must be done on the ...” in 📘 Physics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers