Ask Question
3 December, 08:47

Derivative of arcsin (cos (2x))

is this chain rule?

+1
Answers (1)
  1. 3 December, 09:11
    0
    Yes, you need to use the chain rule. Also you need to use the derivative of arcsin which is in tables.

    Derivative of y = arcsin (x) = 1 / [√ (1 - x^2) ]

    Chain rule: Derivative of archsin (cos (2x)) =

    y' = 1 / [√ (1 - (cos (2x)) ^2) ] * derivative (cos (2x) =

    y' = 1 / [√ (1 - (cos (2x)) ^2) ] * ( - sin (2x)) * 2

    y' = - 2 (sin (2x)) / [√ (1 - (cos (2x)) ^2]
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Derivative of arcsin (cos (2x)) is this chain rule? ...” in 📘 Physics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers