Ask Question
26 December, 12:02

Calculate the pressure (psig) at the bottom of a 7500 foot column of fluid for each of the following fluids:

a) Water

b) Drilling Mud (SG = 1.3)

c) Gas Lift column (S. G. = 0.85)

d) Natural Gas Column (SG = 0.6*) '*SG for Natural Gas is compared against air (density = 0.0765 lb / (cu ft))

+4
Answers (1)
  1. 26 December, 12:27
    0
    Pressure at the botton of 7500 ft column is:

    a) P (water) = 3256.508 psig

    b) P (drilling mud) = 4229.035 psig

    c) P (gas lift) = 18.092 psig

    d) P (Natural gas) = 17.092 psig

    Explanation:

    hidrostatic pressure:

    P = (d. f * g * h) + Po

    ∴ density of fluid (d. f) ≡ Kg/m³

    ∴ aceleration o gravity (g) = 9.807 m/s²

    ∴ column height (h) = 7500 ft * (m / 3.28084 ft) = 2285.99 m

    ∴ atmospheric pressure (Po) = 101300 Pa (Kg / m*s²)

    specific gravity:

    SG = d. f / d H2O (ref)

    ∴ d H2O = 997 Kg/m³

    a) water:

    ⇒ P = (997 * 9.807 * 2285.99) + 101300

    ⇒ P = 22452844,88 Pa * (psig / 6894.76 Pa) = 3256.508 psig

    b) Drilling Mud

    ⇒ SG = 1.3 = d. f / 997

    ⇒ d. f = 1296.1 Kg/m³

    ⇒ P = (1296.1 * 9.807 * 2285.99) + 101300

    ⇒ P = 29158182.16 Pa = 4229.035 psig

    c) Gas lift column

    ⇒ SG = 0.85 = d. f / d. air (ref)

    ∴ d. air = 0.0765 Lb/ft³ = 1.23 Kg/m³

    ⇒ d. f = 1.23 * 0.85 = 1.0455 Kg/m³

    ⇒ P = (1.0455 * 9.807 * 2285.99) + 101300

    ⇒ P = 124738.755 Pa = 18.092 psig

    d) Natural Gas column:

    ⇒ SG = 0.6 = d. f / 1.23

    ⇒ d. f = 0.738 Kg/m³

    ⇒ P = (0.738 * 9.807 * 2285.99) + 101300

    ⇒ P = 117845.003 Pa = 17.092 psig
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Calculate the pressure (psig) at the bottom of a 7500 foot column of fluid for each of the following fluids: a) Water b) Drilling Mud (SG = ...” in 📘 Chemistry if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers