 Engineering
21 August, 19:29

Air at 1 atm enters a thin-walled (5-mm diameter) long tube (2 m) at an inlet temperature of 100°C. A constant heat flux is applied to the air from the tube surface. The air mass flow rate is 140 * 10-6 kg/s. If the tube surface temperature at the exit is 160°C, determine the heat rate entering the tube, in W. Evaluate properties at 400 K.

+3
1. 21 August, 20:52
0
heat rate = 7.38 W

Explanation:

Given dа ta:

Pressure = 1atm

diameter (D) = 5mm = 0.005m

length = 2

mass flow rate (m) = 140*10^-6 kg/s

Exit temperature = 160°C,

At 400K,

Dynamic viscosity (μ) = 22.87 * 10^-6

Prandtl number (pr) = 0.688

Thermal conductivity (k) = 33.65 * 10^-3 W/m-k

Specific heat (Cp) = 1.013kj/kg. K

Step 1: Calculating Reynolds number using the formula;

Re = 4m/πDμ

= (4*140*10^-6) / (π * 0.005*22.87 * 10^-6)

= 5.6*10^-4/3.59*10^-7

= 1559.

Step 2: Calculating the thermal entry length using the formula

Le = 0.05*Re*Pr*D

Substituting, we have

Le = 0.05 * 1559 * 0.688 * 0.005

Le = 0.268

Step 3: Calculate the heat transfer coefficient using the formula;

Nu = hD/k

h = Nu*k/D

Since Le is less than given length, Nusselt number (Nu) for fully developed flow and uniform surface heat flux is 4.36.

h = 4.36 * 33.65 * 10^-3/0.005

h = 0.1467/0.005

h = 29.34 W/m²-k

Step 4: Calculating the surface area using the formula;

A = πDl

=π * 0.005 * 2

=0.0314 m²

Step 5: Calculating the temperature Tm

For energy balance,

Qc = Qh

Therefore,

H*A (Te-Tm) = MCp (Tm - Ti)

29.34 * 0.0314 (160-Tm) = 140 * 10-6 * 1.013*10^3 (Tm-100)

0.921 (160-Tm) = 0.14182 (Tm-100)

147.36 - 0.921Tm = 0.14182Tm - 14.182

1.06282Tm = 161.542

Tm = 161.542/1.06282

Tm = 151.99 K

Step 6: Calculate the rate of heat transferred using the formula

Q = H*A (Te-Tm)

= 29.34 * 0.0314 (160-151.99)

= 7.38 W

the Prandtl number using the formula