Ask Question
23 May, 05:01

If 3, x, y, 18 are in arithmetric progression, find the value of x and y

+4
Answers (1)
  1. 23 May, 05:23
    0
    Given:

    arithmetic progression

    a₁ = 3

    a₂ = x

    a₃ = y

    a₄ = 18

    Solution:

    The arithmetic progression has general formula to determine nth term

    a₁ + d (n - 1) = an

    a₁ represents first term, d represents difference, n represents number of terms, an represents nth term

    First we should find out the value of d, by submitting a₄ to the formula

    a₁ + d (n - 1) = an

    a₁ + d (4 - 1) = a₄

    3 + d (3) = 18

    3 + 3d = 18

    3d = 15

    d = 5

    The difference of the sequence is 5

    Second, determine x and y

    x = a₂

    x = a₁ + d (2 - 1)

    x = 3 + 5 (1)

    x = 8

    y = a₃

    y = a₁ + d (3 - 1)

    y = 3 + 5 (2)

    y = 13

    The value of x is 8, the value of y is 13
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “If 3, x, y, 18 are in arithmetric progression, find the value of x and y ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers