Ask Question
11 June, 12:09

Determine whether each integral is convergent or divergent.

1 - 1 / (x-2) ^3/2 dx, limits (infinite to 3)

2 - (1/3-4x) dx, limits (0 to - infinite)

3 - e^ (-5p) dx, limits (infinite to 2)

4 - (x^2 / (sqrt (1+x^3))) dx, limits (infinite to 0)

5 - lnx/x dx, limits (infinite to 1)

6 - 1 / (x^2 + x) dx, limits (infinite to 1)

7 - 3/x^5 dx, limits (1 to 0)

8 - dx / (x+2) ^1/4, limits (14 to - 2)

9 - 1 / (x-1) ^1/3, limits (9 to 0)

10 - e^x / ((e^x) - 1), limits (1 to - 1)

11 - z^2 lnz dz, limits (2 to 0)

12 - s = (x, y)

+2
Answers (2)
  1. 11 June, 12:16
    0
    Divergers
  2. 11 June, 13:27
    0
    Step-by-step explanation: 1) ∫ 1 / (x - 2) ∧3/2 dx, Limits ⇒ infinite to 3

    ∫ (x - 2) ∧-3/2 = - 2 / (x - 2) ∧1/2 + c

    Limit⇒ infinite to 3: - 2 / (3 - 2) = - 2 (convergent)

    2) ∫1 / (3 - 4x) dx, Limits⇒ 0 to infinite

    Let u = 3 - 4x

    du = - 4 dx

    ∴ dx = - 1/4du

    Hence, - 1/4∫1/udu = - 1/4ln u + c = - 1/4ln (3 - 4x) + c

    Limits⇒ 0 to infinite: - 1/4㏑ (3 - 0) = - 1/4 ㏒3 (convergent)

    3) ∫e∧ (-5x) dx, Limits⇒ infinite to 2

    Let u = - 5x

    du = - 5dx

    ∴ dx = - 1/5du

    -1/5∫e∧-u = - 1/5e∧-5x + c

    Limits⇒ infinite to 2: - 1/5e∧-5 (2) = - 1/5e∧-10 (divergent)

    4) ∫x²/√ (1 + x³) dx, Limits⇒ infinite to 0

    Let u = 1 + x³

    du = 3x²dx

    ∴ dx = 1/3x²du

    1/3x²∫x²/u∧1/2du = 1/3㏑u∧1/2 + c = 1/3㏑ (√1 + x²) + c

    Limits⇒infinite to 0: 1/3㏒0 = infinite (divergent)

    5)

    6) ∫1 / (x² + x) dx, Limits⇒ infinite to 1

    ㏑ (x² + x) + c

    Limits⇒ infinite to 1: ㏒ (1 + 1) = ㏒ 2 (divergent)

    7) ∫3/x∧5dx = ∫3x∧-5dx, Limits⇒ (1 to 0)

    - 3/4x∧-4 + c

    Limits (1 to 0) : - 3/4 (1) ∧-4 - (-3/4 (0)) = - 3/4 + 0 = - 3/4 (convergent)

    8) ∫1 / (x + 2) ∧1/4 dx, Limits (14 to - 2)

    Let u = x + 2

    du = dx

    ∫1/u∧1/4 du = ∫u∧-1/4

    3/4u∧3/4 = 3 (x + 2) ∧3/4/4 + c

    Limits (14 to - 2) : 3 (14 + 2) ∧3/4/4 - (3 (-2 + 2) ∧3/4/4) = 3 (16) ∧3/4/4 - 0

    3 (2) ³/4 = 3 X 8/4 = 3 X 2 = 6 (convergent)

    9) ∫1 / (x - 1) ∧1/3dx, Limits (9 to 0)

    Let u = x - 1

    du = dx

    ∫1/u∧1/3 du = ∫u∧-1/3du = 2u∧2/3/3 + c = 2 (x - 1) ∧2/3/3 + c

    Limits (9 to 0) : 2 (9 - 1) ∧2/3/3 - 2 (0 - 1) ∧2/3/3 = 2 (8) ∧2/3 - 2 (-1) ∧2/3/3

    2 (2) ²/3 - 2/3 = 8/3 - 2/3 = 6/3 = 2 (convergent)

    10) ∫e∧x / (e∧x - 1), Limits (1 to - 1)

    Let u = e∧x - 1

    du = e∧x dx

    ∴ dx = 1/e∧x du

    1/e∧x∫e∧x/u du

    ∫1/u = ㏑u du + c = ㏒ (e∧x - 1) + c

    Limits (1 to - 1) : ㏒ (e - 1) - ㏒e∧-1 - 1

    ㏒ (e - e∧-1) (divergent)

    11) ∫z∧2㏑z dz, Limits (2 to 0) (divergent)

    12) Diververgent
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Determine whether each integral is convergent or divergent. 1 - 1 / (x-2) ^3/2 dx, limits (infinite to 3) 2 - (1/3-4x) dx, limits (0 to - ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers