Ask Question
15 July, 12:48

Find the exact values of the sine, cosine, and tangent of the angle. 255=300-45

+1
Answers (1)
  1. 15 July, 16:08
    0
    Sin 255 = sin (300 - 45) = sin 300 cos 45 - cos 300 sin 45; where sin 300 = - sin (360 - 60) = - sin 60 = - √3/2, sin 45 = cos 45 = 1/√2, cos 300 = cos (360 - 60) = cos 60 = 1/2

    Therefore, sin 255 = (-√3/2) (1/√2) - (1/2) (1/√2) = - √3/2√2 - 1/2√2 = - (√3 + 1) / 2√2 = - (√6 + √2) / 4

    cos 255 = cos (300 - 45) = cos 300 cos 45 + sin 300 sin 45 = (1/2) (1/√2) + (-√3/2) (1/√2) = (1 - √3) / 2√2 = (√2 - √6) / 4

    tan 255 = tan (300 - 45) = (tan 300 - tan 45) / (1 + tan 300 tan 45); where tan 300 = sin 300 / cos 300 = (-√3/2) / (1/2) = - √3 and tan 45 = 1

    Therefore, tan 255 = (-√3 - 1) / (1 + (-√3)) = (-√3 - 1) / (1 - √3) = √3 + 2
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “Find the exact values of the sine, cosine, and tangent of the angle. 255=300-45 ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers