Ask Question
10 December, 20:15

A set of piano prices distributed at a mean of 3000 and a standard deviation of 200 dollars. An electric piano has a price of 2576 dollars. What proportion of piano prices are higher than the price of the electric piano?

+3
Answers (1)
  1. 10 December, 22:46
    0
    The proportion of piano prices higher than the electric piano is 98.3%

    Step-by-step explanation:

    The first thing to do here is to calculate the standard score of the price of the electric piano given.

    Mathematically, this is

    z-score = (x-mean) / SD

    where mean is 3000 and SD is 200, x is 2576

    z-score = (2576-3000) / 200 = - 2.12

    Now we proceed to calculate the probability of this z-score

    The probability we are trying to calculate is

    P (x > $2576) or simply P (z > - 2.12)

    Using standard score probability calculator or table, we have

    P (x>2576) = 1 - P (x<2576)

    But, P (x<2576) = 0.017003

    P (x>2576) = 1 - P (x<2576) = 0.983

    This is same as 98.3%
Know the Answer?
Not Sure About the Answer?
Find an answer to your question ✅ “A set of piano prices distributed at a mean of 3000 and a standard deviation of 200 dollars. An electric piano has a price of 2576 dollars. ...” in 📘 Mathematics if you're in doubt about the correctness of the answers or there's no answer, then try to use the smart search and find answers to the similar questions.
Search for Other Answers